TECHNICAL COMPARISON
HEAT-COOL-COMBINATIONS
HEAT-COOL-COMBINATIONS
TECHNICAL COMPARISON

The application of Heat-Cool-Combinations will result in rapid and effective heating and cooling coupled with energy-efficiency.

Conventional systems such as HKK (ceramic) or HKC (ceramic with copper cooling fins) give fast heat-up times but without uniform temperature distribution along the heated area as achieved by the HAK system.

With its compact design and heating elements inclosed in high heat conductive aluminium small temperature differences along the screw barrel can be achieved.

Stresses and material deposits are reduced or even avoided. High machine productivity and product quality are supported and encouraged.

Test set up
HKK 225D 360L 230V 4800W
HAK 225D 360L 230V 4800W

Test procedure
1. heat up cylinder to 250°C (measuring point 1) via the heating elements HKK or HAK
2. turn off Heat-Cool-Combinations, turn on the internal heating elements (8 kW) and the blower

Variation-diagram: heat-up and cool-down behaviour

Due to the enlarged radiating surface and the use of aluminum as heat and energy element a significant increase in performance is achieved.
Cooling energy demand

In the cooling cycle (see fig. on left) high energy for cooling is required with the conventional HKK compared to the new HAK. In order to maintain the set temperature constant, the HAK requires less energy consumption compared with conventional ceramic-insulated Heat-Cool-Combinations. The minimum temperature can be maintained even in difficult areas and will also help to increase the material throughput.

Temperature uniformity in the screw barrel

The uniform temperature spread along Cylinders with extrusion lines (see right hand figure above) is particularly significant. By using the HAK not only the throughput and product quality can be improved, but also taken influence on the material (negative voltage build-up). The isothermal temperature distribution of the HAK on the cylinder simultaneously causes a uniform material cooling, which helps to avoid cylinder stresses.

Temperature distribution and airflow HAK

Simulation of the temperature distribution and air flow in a 3D model

With the "HAK" the heating works on the contact side across the entire zone length and thus ensures an even heat distribution. The arrangement of the cooling fins occurs an enlargement of the radiating surface and provides a good air circulation in the cooling jacket.
Locations

GERMANY
Ihne & Tesch GmbH
Am Drostenstueck 18
D-58507 Luedenscheid
P.O. Box 1863
D-58468 Luedenscheid
Phone: +49 2351 666 0
Fax: +49 2351 666 24
info@itlmail.de

Ihne & Tesch GmbH
Aalener Straße 42
D-90441 Nuremberg
P.O. Box 710143
D-90238 Nuremberg
Phone: +49 911 96678 0
Fax: +49 911 6266430
info@itnmail.de

Keller, Ihne & Tesch KG
Kunigundenstraße 13
D-68623 Lampertheim
P.O. Box 5164
D-68612 Lampertheim
Phone: +49 6241 98808 0
Fax: +49 6241 80056
info@kitmail.de

www.elektrowaermetechnik.de

AUSTRIA
Keller, Ihne & Tesch GmbH
Bahnhofstraße 90
A-3350 Haag
Phone: +43 7434 43880
Fax: +43 7434 43883
info@kitmail.at

www.elektrowaermetechnik.at

FRANCE
Celtic S.A.R.L.
2/4 Rue René Cassin
ZAC La Villette-aux-Aulnes
F-77290 Mitry-Mory
Téléphone: +33 160 21 21 80
Téléfax: +33 160 21 21 81
info@celtic.fr

www.celtic.fr

GREAT BRITAIN
KIT Electroheat Ltd.
Office F10
Mexborough Business Centre
College Rd
GB-S64 9JP Mexborough
Phone: +44 1443 442 176
Fax: +44 1443 441 861
mail@kitelectroheat.co.uk

www.kitelectroheat.co.uk